ModelRisk needs to be installed in order for the model to work.
An example of a Monte Carlo simulation risk analysis model for Statistics modeling
Technical difficulty: 2 Techniques used: Monte Carlo simulation in Excel
Sometimes we wish to super-impose a boundary condition on a stochastic time series because it is impossible for the variable to extend outside the bounding range. Usually this means that the base model is a fairly crude representation of what we believe might happen, otherwise the boundaries become natural consequences of the model's mathematics. We first have to decide how the variable will behave as it approaches the boundaries. Two examples are:
The times series is a Lognormal random walk (a common model for stock prices) - column C (cells C12:C31), and is constrained by linear lower (column D) and upper (column E) bounds. As the actual level cannot go beyond the bounds, the model takes the maximum or the minimum values whenever the unconstrained model would pass outside these bounds. A variation on the model would be to reset the variable (in red) to any constrained value (where the actual (blue) deviates from the base variable).